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Abstract. We derive new stationarity results for derivative-free, generating set search methods
for linearly constrained optimization. We show that there is a measure of stationarity that is of the
same order as the step length at an identifiable subset of the iterations. Thus, even in the absence of
explicit gradient information, we still have information about stationarity. These results help both
to unify the convergence analysis of several direct search algorithms and to clarify the fundamental
geometrical ideas that underlie them. In addition, these results validate a practical stopping criterion
for such algorithms, which numerical results confirm.
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1. Introduction. We consider the convergence properties of a class of direct
search methods for solving linearly constrained optimization problems:

minimize f(x)
subject to Ax ≤ b.

(1.1)

Here f : Rn → R and A is an m × n matrix. We assume that f is continuously
differentiable on Ω but that the gradient information is not computationally available;
i.e., no procedure exists for computing the gradient and it cannot be approximated
accurately. We use Ω to denote the feasible set:

Ω = { x | Ax ≤ b } .

We do not assume that the constraints are nondegenerate.
Even though direct search methods do not have explicit recourse to derivatives,

there are direct search algorithms that have been shown to converge to Karush–Kuhn–
Tucker (KKT) points of (1.1); e.g., see [27, 36, 21, 26, 31, 17]. Our goal in revisiting
the convergence analysis of direct search algorithms for solving (1.1) is to explore the
threads common to each of these analyses. Specifically, we present stationarity results
in §6 that clarify the roles played by the choice of search directions, step lengths, and
step acceptance criterion for the direct search algorithms considered. Additionally,
since it is assumed that direct search methods do not have direct access to ∇f , we
ask if it is possible to say anything about the quality of the solution returned by a
direct search method when it is terminated; the answer for the class of direct search
methods we consider here turns out to be “Yes.”
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Fig. 1.1. Compass search with exact penalization applied to the modified Broyden tridiagonal
function with bound constraints.

We refer to the direct search methods we examine (which include, for instance,
pattern search methods [33]) as generating set search (GSS) [17]. To give some con-
text for the discussion that follows, in Figure 1.1 we illustrate compass search, one
particular instance of a GSS method. We apply compass search to a standard test
problem (the two-dimensional modified Broyden tridiagonal function), with bounds
on the variables. Level curves of the function are shown in the background; the feasible
region is the box labeled Ω.

Compass search can be summarized as follows: Generate trial points (illustrated
using squares) to the East, West, North, and South of the current iterate (illustrated
using a circle). If one of the trial points is feasible and reduces the value of the
function at the current iterate, the improved point becomes the new iterate and the
iteration is deemed successful. Otherwise, none of the feasible trial points improves
upon the value of the function at the current iterate, so we reduce the step by a factor
of a half. In this case the iteration is deemed unsuccessful.

The kth iterate is denoted xk. At each iteration, a set of search directions,
Dk =

{
d
(1)
k , . . . , d

(pk)
k

}
, is generated. For compass search, we always choose d

(1)
k = e1,

d
(2)
k = −e1, d

(3)
k = e2 and d

(4)
k = −e2, where the ei’s are the unit coordinate vectors.

The trial points are then given by
{

xk + ∆kd
(i)
k | i = 1, . . . , 4

}
. The scalar ∆k is

the step-length control parameter. The set of indices of all successful iterations is
denoted by S. The set of indices of all unsuccessful iterations is denoted by U .

Note that in the example illustrated in Figure 1.1, as xk approaches the con-
strained solution, compass search reduces the lengths of the steps taken by reducing
∆k. Typically, compass search is terminated when the step length control parameter
∆k falls below a certain tolerance, say ∆tol. One of the goals of this paper is to show
that this is a reasonable test for termination.
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In the case of unconstrained minimization (Ω = Rn), it can be shown (under
appropriate conditions) [11, 17] that the following relation holds:

‖∇f(xk) ‖ = O(∆k) for k ∈ U .(1.2)

At the same time, one can also show that lim infk→∞∆k = 0. As a consequence, one
obtains the stationarity result lim infk→∞ ‖∇f(xk) ‖ = 0.

In this paper we establish analogous results for (1.1). We consider the following
measure of stationarity, which was introduced in [9]:

χ(x) ≡ max
x+w∈Ω
‖w ‖≤1

−∇f(x)T w.

As discussed in [10], χ(x) is a continuous function. Furthermore, χ(x) = 0 for x ∈ Ω if
and only if x is a KKT point of (1.1). In addition, if Ω = Rn, then χ(x) = ‖∇f(x) ‖.
We show in Theorem 6.4 that, under certain assumptions,

χ(xk) = O(∆k) for k ∈ U .(1.3)

The same arguments as in the unconstrained case show that lim infk→∞∆k = 0.
Thus, we once again obtain first-order stationarity. In addition, if Ω = Rn, then (1.3)
reduces to (1.2), as one would wish.

By way of background, a different measure of stationarity was previously studied
in [21] for the case of linear constraints. The quantity

q(x) ≡ PΩ (x−∇f(x))− x,(1.4)

where PΩ denotes the projection onto Ω, is a continuous function of x with the prop-
erty that q(x) = 0 for x ∈ Ω if and only if x is a KKT point. In [21, Proposition 7.1]
it was shown that

‖ q(xk) ‖ = O(
√

∆k) for k ∈ U .(1.5)

If Ω = Rn, then q(x) = −∇f(x); however, (1.5) does not reduce to (1.2) as one would
wish (though in the bound constrained case, one can obtain a relationship of the form
‖ q(xk) ‖ = O(∆k) [22]).

The algorithms discussed here are similar to other recently proposed direct search
methods for bound and linearly constrained optimization [20, 21, 24, 26, 2, 31, 16].
We present a new criterion, melding ideas from [20, 21, 24, 26], for generating a
sufficient set of search directions. The approach outlined in [21] and Algorithm 2
of [26] use one prescription for the set of search directions; Algorithm 1 in [26] uses
another. Here we give yet a third, intermediate to both. What has become clear
is that there is a variety of options for generating the set of search directions that
guarantee asymptotic convergence to KKT points of (1.1).

The analysis in [2, 24, 26, 31] differs from our perspective in that the focus is
on the nature of the limit points of the sequence of iterates (at least one limit point
existing under mild and standard assumptions). In [26], the assumption that f is
continuously differentiable then ensures that for their Algorithm 1, at least one limit
point is a KKT point of (1.1), and for their Algorithm 2, any limit point is a KKT
point of (1.1). The results in [2, 31], relax the smoothness requirements on f , but
conclude only that if f is strictly differentiable [8] at a limit point, then that limit
point is a KKT point of (1.1). However, without assuming more differentiability of
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f there are no mechanisms within the algorithms proposed in [2, 31] to ensure that
the sequence of iterates converges to a point that satisfies the KKT conditions. It is
straightforward to construct examples for which the algorithms can fail to converge
to KKT points [17].

Here we assume that f is continuously differentiable to ensure asymptotic con-
vergence to a KKT point. However, rather than looking only at limit points, we
examine what happens as the iterates progress toward a KKT point. This difference
in perspective allows us to obtain a bound on χ(xk) once the lengths of the steps
are “small enough,” where “small enough” is in a sense that we can quantify. This
difference in perspective has practical import for those interested in implementing
GSS methods for solving (1.1). For instance, the bound on χ implied by (1.3) and
obtained in (6.6) supports our assertion that ∆k can be used to assess progress toward
a solution. Furthermore, the bound in (6.6) illuminates what algorithmic parameters
can—and should—be monitored to ensure the effectiveness of an implementation [19].
Finally, our analysis also yields an estimate (Theorem 6.3) that makes it possible to
use the direct search algorithms we discuss in connection with the augmented La-
grangian approach presented in [9] to handle problems with both linear and nonlinear
constraints.

The paper is organized as follows. In §2, we describe how to choose search di-
rections for GSS methods applied to problems with linear constraints. As we saw in
Figure 1.1, GSS algorithms may generate trial points that are infeasible, so in §3 we
describe how feasibility is maintained. In §4 we discuss the globalization strategies
that ensure lim infk→∞∆k → 0. Formal statements of GSS algorithms for solving
linearly constrained problems are given in §5. We present two general algorithms.
The first (Algorithm 5.1) uses a sufficient decrease condition, similar to that used in
[24, 26]). The second (Algorithm 5.2) uses a simple decrease condition as in [20, 21].
Results showing that these algorithms converge to a KKT point of (1.1) are derived
in §6. In §7 we discuss what the analysis reveals about using ∆k to test for conver-
gence and demonstrate its effectiveness on two test problems. In §8, we summarize
the results and their importance. Appendix A contains a discussion of χ(x) and its
use as a measure of stationarity. Appendix B contains geometric results on cones and
polyhedra.

2. Search directions. Since GSS methods assume that ∇f(x) is not available,
they cannot directly identify descent directions. As a first consideration, therefore,
GSS methods must include enough search directions in the set Dk to guarantee that
at least one of them is a descent direction, no matter the direction of steepest descent.
In addition, there must be a way to ensure that at least one of the search directions
in Dk allows for a sufficiently long step while remaining inside the feasible region. In
this context, “sufficiently long” is relative to the amount of possible local improvement
that can be made. This demand requires a careful choice of search directions when
the iterate xk is near the boundary of the feasible region, so GSS methods for solving
problem (1.1) require mechanisms for choosing directions that capture the geometry
of the feasible region near xk.

To describe what is required of the sets of search directions for GSS methods
for linearly constrained problems, we start in §2.1 by reviewing some basic concepts
regarding finitely-generated cones. Then, in §2.2, we show how to use the constraints
given in (1.1) to define cones that mirror the geometry of the boundary of the poly-
hedron Ω near the current iterate xk. Finally, in §2.3, we show how to dynamically
construct a set Dk that satisfies our requirement that there exists at least one direc-
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tion along which it is possible to take a step of sufficient length while remaining inside
Ω.

2.1. Cones and generators. A set K is a cone if for any x ∈ K, αx ∈ K for
all α ≥ 0. The polar of a cone K, denoted K◦, is defined by

K◦ =
{

v | wT v ≤ 0 for all w ∈ K
}

.

The polar of a cone is itself a cone.
Given a convex cone K and any vector v, there is a unique closest point of K

to v, called the projection of v onto K, which we denote by vK . Given a vector v
and a convex cone K, any vector v can be written as v = vK + vK◦ and vT

KvK◦ = 0
[28, 32, 34, 37].

A set of vectors G generates K if K is the set of all nonnegative linear combinations
of elements of G. A cone K is called finitely generated if it can be generated by a
finite set of vectors. If K is finitely generated by G, then we define

κ(G) = min
v∈Rn

vK 6=0

max
d∈G

vT d

‖ vK ‖ ‖ d ‖
.(2.1)

This is a generalization of the quantity given in [17, (3.10)], where it was assumed
that K = Rn. Proposition 2.1 says that κ(G) > 0; see Corollary 10.4 in [21].

Proposition 2.1. Let K be a convex cone in Rn generated by the finite set G.
Then κ(G) > 0.

2.2. Tangent and normal cones. Recalling the definition of the linearly con-
strained problem (1.1), let aT

i be the ith row of the constraint matrix A, and let

Ci =
{

y | aT
i y = bi

}
denote the set where the ith constraint is binding. The set I(x) of binding constraints
at x is I(x) = { i | x ∈ Ci }. The normal cone at a point x, denoted by N(x), is
the cone generated by the binding constraints, i.e., the cone generated by the set
{ ai | i ∈ I(x) } ∪ {0}. The presence of {0} means that N(x) = {0} if there are no
binding constraints. The tangent cone, denoted by T (x), is the polar of the normal
cone. Further discussion of the tangent and polar cones in the context of optimization
can be found, for instance, in [7, 30, 32].

In our case, we are not only interested in the binding constraints, but also in the
nearby constraints. Given x ∈ Ω, we define the set of ε-binding constraints to be

I(x, ε) = { i | dist(x, Ci) ≤ ε } .(2.2)

The vectors ai for i ∈ I(x, ε) are the outward-pointing normals to the faces of the
boundary of Ω within distance ε of x. Examples are shown in Figure 2.1 for three
choices of x ∈ Ω.

Given x ∈ Ω, we define the ε-normal cone N(x, ε) to be the cone generated by
the set { ai | i ∈ I(x, ε) } ∪ {0}. Its corresponding polar cone is the ε-tangent cone
T (x, ε). Observe that if ε = 0, these are just the standard normal and tangent cones;
that is, N(x, 0) = N(x) and T (x, 0) = T (x).

Examples of ε-normal and ε-tangent cones are illustrated in Figure 2.2. The
cone T (x, ε) approximates the polyhedron Ω near x. (More precisely, x + T (x, ε)
approximates the feasible region near x.) Note that if I(x, ε) = ∅, then N(x, ε) = {0}
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1

ε

a
1

a
2

I (x
1
, ε) = { 1, 2 }

Ω x
2

ε

a
3

a
2
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2
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ε

I (x
3
, ε) = ∅

Fig. 2.1. The outward-pointing normals ai for the index set I(x1, ε) = {1, 2} and ai for the
index set I(x2, ε) = {2, 3}. Since the distance from x3 to ∂Ω is greater than ε, I(x3, ε) = ∅.

T(x,ε
1
)

N(x,ε
1
)

ε
1

Ω

x

T(x,ε
2
)

N(x,ε
2
)

ε
2

Ω

x

T(x,ε
3
)

ε
3

Ω

x

Fig. 2.2. The cones N(x, ε) and T (x, ε) for the values ε1, ε2, and ε3. Note that for this example,
as ε varies from ε1 to 0, there are only the three distinct pairs of cones illustrated (N(x, ε3) = {0}).

and T (x, ε) = Rn; in other words, if the boundary is more than distance ε away then
the problem looks unconstrained in the ε-neighborhood of x, as can be seen in the
third example in Figure 2.2.

If T (x, ε) 6= {0}, then one can proceed from x along all directions in T (x, ε) for a
distance of at least ε, and remain inside the feasible region, as illustrated in Figure 2.2
and formalized in Proposition 2.2.

Proposition 2.2. If x ∈ Ω, and v ∈ T (x, ε) satisfies ‖ v ‖ ≤ ε, then x + v ∈ Ω.
Proof. Suppose not; i.e., v ∈ T (x, ε) and ‖ v ‖ ≤ ε, but x + v 6∈ Ω. Then there

exists i such that aT
i (x + v) > bi. Using the fact that x ∈ Ω, so aT

i x ≤ bi, we have

aT
i v > bi − aT

i x ≥ 0.(2.3)

Define

t =
bi − aT

i x

aT
i v

.

Note that t < 1 by (2.3). Let y = x + tv. Then aT
i y = bi and ‖x − y ‖ = ‖ tv ‖ < ε.

Thus, i ∈ I(x, ε) and ai ∈ N(x, ε). Since, by hypothesis, v ∈ T (x, ε), we must have
aT

i v ≤ 0. However, this contradicts (2.3).
All possible cones N(x, ε) and T (x, ε) can be generated using a finite number of

vectors, as formalized in the following proposition.
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Proposition 2.3. There exists a finite set A such that A contains generators
for every set N(x, ε) with x ∈ Ω and ε ≥ 0. As a consequence, there also exists a
finite set G such that G contains generators for every set T (x, ε) with x ∈ Ω and
ε ≥ 0.

Proof. Let A = {a1, . . . , am}. Each N(x, ε) is generated by at most m vectors
(one per ε-binding constraint) from the set A.

Furthermore, since N(x, ε) is finitely generated, its polar T (x, ε) is also finitely
generated [32, 34]. Next, the set of all possible ε-normal cones is finite. More specif-
ically, the cardinality of the set { N(x, ε) | x ∈ Ω, ε > 0 } is bounded by 2m where
m is the number of linear constraints. Thus, there are only finitely many sets T (x, ε),
each of which is finitely generated. Choose a finite set of generators for each possible
T (x, ε); then the union G of these generators is finite.

The definition of A ensures that for every x ∈ Ω and ε ≥ 0 there exists A ⊆ A
such that A generates N(x, ε). Furthermore, for every x ∈ Ω and ε ≥ 0, there exists
a constant νmin > 0 such that the following holds:

κ(A) ≥ νmin.(2.4)

The set A is immediate. The set G is not; nevertheless, such a set is possible to
construct. Returning to the example in Figure 2.2, in Figure 2.3 we show generators
of T (x, ε) for x, which is fixed, with three different values of ε. In Figure 2.3, d(1)

and d(2) generate T (x, ε1); d(1), d(2), and d(3) generate T (x, ε2); and d(1), d(2), d(3),
and d(4) generate T (x, ε3). For this simple example it is a straightforward exercise to
verify that for any x ∈ Ω and any ε > 0, generators for every T (x, ε) are contained in
the finite set

G = {d(1), d(2, d(3), d(4), d(5), d(6)},(2.5)

where d(5) = −d(1) and d(6) = −d(4).

T(x,ε
1
)

N(x,ε
1
)

ε
1

d(2)

d(1)

Ω

x

T(x,ε
2
)

N(x,ε
2
)

ε
2d(2)

d(1)

d(3)

Ω

x

T(x,ε
3
)

ε
3d(2)

d(1)

d(4)

d(3)

Ω

x

Fig. 2.3. Generators for the cones T (x, ε) for the values ε1, ε2, and ε3.

2.3. Choosing the search directions. We can now state the conditions we
place on the search directions for GSS for linearly constrained optimization. At each
iteration k we require that a subset of the search directions generates T (xk, εk). The
quantity εk > 0 is the threshold for deciding which constraints are considered nearby
at iteration k. The particular value of εk, discussed in §5, involves the maximum step
length at iteration k. The requirement that Dk must contain vectors which generate
the cone T (xk, εk) ensures that Dk contains at least one search direction along which
a sufficiently long feasible step can be taken.
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To make the condition precise, recall that the set of search directions at iteration k
is Dk. We partition Dk so that Dk = Gk∪Hk. The set Gk contains the directions that
are critical to ensure convergence and so is the focus of our analysis. The (possibly
empty) set Hk contains extra directions that may improve the effectiveness of the
search. The set Gk must satisfy Condition 1.

Condition 1. There exists a constant κmin > 0, independent of k, such
that for all k the following holds. For every k, there exists a G ⊆ Gk such
that G generates T (xk, εk) and, furthermore, κ(G) ≥ κmin.

The lower bound κmin is needed to avoid the situation shown in Figure 2.4(a).
The “ideal” choice, using a minimal number of vectors while ensuring that κ(G) is as
large as possible, would be d

(3)
ideal, as shown in Figure 2.4(c).

T(x,ε
2
)

N(x,ε
2
)

ε
2d(2)

d(1)
d(3)

poor

Ω

x

(a) Poor choice

T(x,ε
2
)

N(x,ε
2
)

ε
2d(2)

d(3)
good

d(1)

Ω

x

(b) Acceptable choice

T(x,ε
2
)

N(x,ε
2
)

ε
2d(2)

d(1)

d(3)
ideal

Ω

x

(c) “Ideal” choice

Fig. 2.4. Condition 1 is needed to avoid a poor choice when there is freedom in choosing G.

There are many ways to satisfy the requirement κ(G) ≥ κmin. The simplest is to
draw Gk from the finite set G that exists by Proposition 2.3.

The analysis presented here uses the geometric ideas in [21], which are purely
in terms of the intrinsic geometry of the feasible region rather than any particular
algebraic representation. We do not assume that the constraints are nondegenerate.
That said, as a practical matter, identifying the generators for T (x, ε) can require
appreciable work when the constraints are degenerate, or nearly so. Fortunately, this
is a problem that has been well-studied in computational geometry, and both solutions
[29, 5, 6] and software [3, 4, 12] exist. Thus, as discussed in more detail in [19], it is
possible to implement the linearly constrained GSS algorithms analyzed here, even in
the presence of either degeneracy or linear equality constraints.

Condition 1 dictates how, at a minimum, the search directions should be direc-
tionally distributed; the next condition (Condition 2) imposes upper and lower bounds
on the lengths of those directions.

Condition 2. There exist βmin > 0 and βmax > 0, independent of k, such
that for all k the following holds.

βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk.
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This second condition on the choice of Gk is straightforward to satisfy, say, by normal-
izing all search directions so that βmin = βmax = 1. However, there may be situations
where it makes sense to allow the directions in Gk to accommodate scaling informa-
tion. This poses no difficulties for the analysis, so long as there are lower and upper
bounds, independent of k, on the norm of each d ∈ Gk.

3. Choosing the step lengths. Given a set of search directions, the length of
the step along each direction is dictated by the step-length control parameter, denoted
∆k. In the unconstrained case, the set of trial points at iteration k would be{

xk + ∆(i)
k d

(i)
k | i = 1, . . . , pk

}
,

where

Dk =
{

d
(1)
k , d

(2)
k , . . . , d

(pk)
k

}
.

In the constrained case, however, some of those trial points may be infeasible.
Thus, the trial points are instead defined by{

xk + ∆̃(i)
k d

(i)
k | i = 1, . . . , pk

}
,

where

∆̃(i)
k ∈ [0,∆k]

is chosen so that xk + ∆̃(i)
k d

(i)
k ∈ Ω. (The actual step lengths depend both on ∆̃k and

on ‖ d ‖, but recall that ‖ d ‖ is bounded by Condition 2.) The main requirement on
choosing ∆̃(i)

k is that a full step is used if possible, as formally stated in the following
condition.

Condition 3. If xk + ∆kd
(i)
k ∈ Ω, then ∆̃(i)

k = ∆k.

The simplest formula for choosing ∆̃(i)
k ∈ [0,∆k] that satisfies Condition 3 is

∆̃(i)
k =

{
∆k if xk + ∆kd

(i)
k ∈ Ω

0 otherwise.
(3.1)

This corresponds to exact penalization (see the discussion in Section 8.1 of [17]) since
the effect of (3.1) is to reject (by setting ∆̃(i)

k = 0) any step ∆kd
(i)
k that would generate

an infeasible trial point. Since the definition of (1.1) assumes that the constraints are
explicit (i.e., Ax ≤ b is known), verifying the feasibility of a trial point is straightfor-
ward.

Exact penalization is illustrated in Figure 3.1. Returning to our example from
§2, we have Gk =

{
d
(1)
k , d

(2)
k , d

(3)
k , d

(4)
k

}
, where Gk ⊂ G, with the set G from (2.5) and

d
(1)
k ≡ d(1), d

(2)
k ≡ d(2), d

(3)
k ≡ d(3), and d

(4)
k ≡ d(5). Since xk +∆kd

(2)
k and xk +∆kd

(4)
k

are feasible, as shown on the left, Condition 3 requires ∆̃(2)
k = ∆k and ∆̃(4)

k = ∆k,
as shown on the right. On the other hand, since xk + ∆kd

(1)
k and xk + ∆kd

(3)
k are

infeasible, as shown on the left, (3.1) sets ∆̃(1)
k = 0 and ∆̃(3)

k = 0, as shown on the
right.
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∆
k
d

k
(4)

∆
k
d

k
(2)

∆
k
d

k
(1)

∆
k
d

k
(3)

Ω

x
k

∆(4)
k

d
k
(4)~

∆(2)
k

d
k
(2)~

Ω

x
k

Fig. 3.1. The step-length control parameter ∆k may lead to infeasible trial points. The effect
of exact penalization is that infeasible points simply are not considered as candidates to replace xk.

More sophisticated strategies can be employed for choosing ∆̃(i)
k when xk +∆kd

(i)
k

is infeasible. The rationale for choosing, whenever possible, a step length ∆̃(i)
k ∈

(0,∆k] to ensure that the trial point xk + ∆̃(i)
k d

(i)
k is feasible is simple enough: it

seems unsatisfactory to have gone to some pains to ensure at least one feasible de-
scent direction only to reject the resulting trial point due to the value of ∆k. Since
our alternatives for choosing ∆̃(i)

k depend on the globalization strategy, we defer the
discussion of further examples to §4.

4. Globalization. Globalization of GSS refers to the conditions that are en-
forced to ensure that

lim inf
k→∞

∆k = 0.(4.1)

These conditions impact the decision of whether or not to accept a trial point as the
next iterate and how to update ∆k.

Globalization strategies for GSS are discussed in detail in [17]. Here we review
those features that are relevant to our analysis of algorithms for the linearly con-
strained case.

In any GSS algorithm, xk is always the best feasible point discovered thus far;
i.e., f(xk) ≤ f(xj) for all j ≤ k; however, different conditions are imposed on how
much better a trial point must be to be accepted as the next iterate.

In general, for an iteration to be considered successful, we require that there exist
dk ∈ Dk and an ∆̃k ∈ [0,∆k] such that

xk + ∆̃kdk ∈ Ω and f(xk + ∆̃kdk) < f(xk)− ρ(∆k).(4.2)

The function ρ(·) is called the forcing function and must satisfy Condition 4:

Condition 4. (General requirements on the forcing function)
1. The function ρ(·) is a nonnegative continuous function on [0,+∞).
2. The function ρ(·) is o(t) as t ↓ 0; i.e., lim

t↓0
ρ(t) / t = 0.

3. The function ρ(·) is nondecreasing; i.e., ρ(t1) ≤ ρ(t2) if t1 ≤ t2.

Both ρ(∆) ≡ 0 and ρ(∆) = α∆p, where α is some positive scalar and p > 1, satisfy
Condition 4. The first choice can only be used with globalization via a rational lattice,
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which is discussed in §4.2. The second choice can be used with globalization via a
sufficient decrease condition, which is discussed in §4.1.

In the case of a successful iteration (i.e., one that satisfies (4.2)), the next iterate
is defined by

xk+1 = xk + ∆̃kdk for k ∈ S.

(Recall that the set of indices of all successful iterations is denoted by S.) In addition,
∆k is updated according to

∆k+1 = φk∆k, φk ≥ 1 for k ∈ S.

The parameter φk is called the expansion parameter.
If the kth iteration is unsuccessful, it then must be the case that for each d ∈ Gk,

either xk + ∆kd 6∈ Ω or f(xk + ∆kd) ≥ f(xk)− ρ(∆k).

In this case, the best point is unchanged, i.e.,

xk+1 = xk for k ∈ U ,

(recall that the set of indices of all unsuccessful iterations is denoted by U) and the
step-length control parameter is reduced:

∆k+1 = θk∆k, θk ∈ (0, 1), for k ∈ U .

The parameter θk is called the contraction parameter.
There are intimate connections between choosing the φk or θk in the update for

∆k and guaranteeing that (4.1) holds. Further requirements depend on the particular
choice of globalization strategy, and so are given in §4.1 and §4.2.

4.1. Globalization via a sufficient decrease condition. In the context of
gradient-based nonlinear programming algorithms, the enforcement of a sufficient de-
crease condition on the step is well-established (e.g., [1, 13, 35], or see the general
discussion in Section 2.2 of [17]). Enforcing the classic sufficient decrease condition
ties the choice of the step-length control parameter to the expected decrease, as esti-
mated by the initial rate of decrease −∇f(xk)T dk. In the context of GSS methods,
the underlying assumption is that the value of ∇f(xk) is unavailable—which means
that the classic sufficient decrease condition cannot be enforced. However, in [14] an
alternative that uses the step-control parameter, rather than ∇f(xk), was introduced
and analyzed in the context of linesearch methods for unconstrained minimization.
This basic concept then was extended to GSS methods, for both the unconstrained
and the constrained case, in [23, 24, 25, 26]. We restate the essential features here.

Within the context of GSS methods for linearly constrained optimization, a suffi-
cient decrease globalization strategy requires the following of the forcing function ρ(·)
and the choice of the contraction parameter θk.

Condition 5. (The forcing function for sufficient decrease)
The forcing function ρ(·) is such that ρ(t) > 0 for t > 0.

Condition 6. (Decreasing ∆k for sufficient decrease)
A constant θmax < 1 exists such that θk ≤ θmax for all k.
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Full details are discussed in Section 3.7.1 of [17], but we include a few salient obser-
vations here. First, the requirements of Condition 5 are easily satisfied by choosing,
say, ρ(∆) = 10−4∆2, while the requirements of Condition 6 are easily satisfied by
choosing, say, θk = 1

2 for all k = 0, 1, . . . . Second, the upper bound on the contrac-
tion factor θk ensures a predictable fraction of reduction on ∆k after an unsuccessful
iteration, which we require to ensure (4.1) holds.

If a sufficient decrease condition is being employed, then we can use an alternate
strategy to (3.1) for choosing ∆̃(i)

k , as follows:

maximize ∆
subject to 0 ≤ ∆ ≤ ∆k,

xk + ∆ d
(i)
k ∈ Ω.

(4.3)

This option is illustrated in Figure 4.1.

∆
k
d

k
(4)

∆
k
d

k
(2)

∆
k
d

k
(1)

∆
k
d

k
(3)

Ω

x
k

∆(4)
k

d
k
(4)~

∆(2)
k

d
k
(2)~

∆(1)
k

d
k
(1)~

∆(3)
k

d
k
(3)~

Ω

x
k

Fig. 4.1. Observe in the second illustration that applying (4.3) pulls infeasible trial points to
the boundary of Ω.

4.2. Globalization via a rational lattice. Classical direct search methods rely
on simple, as opposed to sufficient, decrease when accepting a step. In other words, it
is enough for the step ∆̃(i)

k d
(i)
k to satisfy f(xk +∆̃(i)

k d
(i)
k ) < f(xk). The trade-off is that

when the condition for accepting a step is relaxed, further restrictions are required
on the types of steps that are allowed. These restrictions are detailed in Conditions
7, 8, and 9.

Condition 7. (Choosing the directions for the rational lattice)
1. The set G = {d(1), . . . , d(p)} is required to be a finite set of search
directions.
2. Every vector d ∈ G is required to be of the form d = Bc, where
B ∈ Rn×n is a nonsingular matrix, and c ∈ Qn, where Q is the set of
rational numbers.
3. All generators are chosen from G; i.e., Gk ⊆ G for all k.
4. All extra directions are integer combinations of the elements of G;. i.e.,
Hk ⊂

{∑p
i=0 ξ(i)d(i) | ξ(i) ∈ {0, 1, 2, . . .}

}
.
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Condition 8. (Increasing or decreasing ∆k for the rational lattice)
1. The scalar Λ is a fixed integer strictly greater than 1.
2. For all k ∈ S, φk is of the form φk = Λ`k where `k ∈ {0, 1, 2 . . .}.
3. For all k ∈ U , θk is of the form θk = Λmk where mk ∈ {−1,−2, . . .}.

Condition 9. (Choosing the steps for the rational lattice)
All steps ∆̃k ∈ [0,∆k] satisfy either ∆̃k = 0 or ∆̃k = Λm∆k > ∆tol, where
m ∈ Z, m ≤ 0 and ∆tol is a value independent of k satisfying ∆0 > ∆tol > 0.

While the list of requirements in Conditions 7, 8, and 9 looks onerous, in fact all can
be satisfied in a straightforward fashion. A full discussion of the reasons for these
requirements can be found in Section 3.7.2 of [17]; here we limit ourselves to a few
observations.

First, a critical consequence of Conditions 7, 8, and 9 is that when all three are
enforced, all iterates lie on a rational lattice, which plays a crucial role in ensuring
(4.1) when only simple decrease is enforced.

Note also that the set G is a conceptual construct that describes a finite set of
all admissible search directions. For instance, as specified in (2.5) for the example in
Figure 2.3, G can be chosen to containing generators for all possible cones T (x, ε), for
all x ∈ Ω and all ε ≥ 0. In this way the third requirement in Condition 7, necessary
for globalization, is satisfied. The finiteness of G also means that Condition 1 and
Condition 2 are satisfied automatically. Furthermore, it is not necessary to construct
the set G of all potential search directions in advance. Finally, a standard assumption
in the context of simple decrease [21] is that the linear constraints are rational, i.e.,
A ∈ Qm×n; see [21, Section 8] for more details.

Now, consider the requirements on the scaling of the step given in Condition 8.
The usual choice of Λ is 2. In the unconstrained case, φk typically is chosen from
the set {1, 2} so that `k ∈ {0, 1} for all k, satisfying the requirement placed on φk in
Condition 8. Usually θk is chosen to be 1

2 so that mk = −1 for all k, satisfying the
requirement placed on θk in Condition 8. Note that the fact Λ−1 is the largest possible
choice of θk obviates the need to explicitly bound θk, as was required in Condition 6
for sufficient decrease.
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∆
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∆
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∆
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d
k
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∆
k
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k
(1)~

∆
k
(3)d

k
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Ω

x
k

Fig. 4.2. Observe in the illustration on the right that starting with ∆̃
(i)
k = ∆k and applying

(4.4) has the effect of systematically decreasing ∆̃
(i)
k (in this example, by 1

2
) until xk + ∆̃

(i)
k d(i) is

feasible (assuming ∆tol is small enough).
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Consider Condition 9 says that is is possible to choose a partial step along a given
direction so long as the trial point remains on the rational lattice. So, as illustrated
in Figure 4.2, along direction d(1), ∆̃(1)

k = 0.5∆k yields the feasible trial step ∆̃(1)
k d(1)

while along direction d(3), ∆̃(3)
k = 0.25∆k yields the feasible trial step ∆̃(3)

k d(3). These
choices for ∆̃(1)

k and ∆̃(3)
k correspond to solving the following problem:

maximize ∆
subject to ∆ = 0 or ∆ = Λm∆k, with ∆tol < Λm∆k, m ∈ {−1,−2, . . .},

xk + ∆ d
(i)
k ∈ Ω.

(4.4)

If, for instance, xk is on the boundary of the feasible region, then it may be necessary
to set ∆̃(i)

k to zero if there is no feasible step from xk along direction d(i). Otherwise,
the goal is to take the longest possible step that keeps the trial point feasible while
remaining on the rational lattice that underlies the search.

5. GSS algorithms for linearly constrained problems. We now formally
state two GSS algorithms for solving problem (1.1). The primary requirements on
the methods are that they satisfy Conditions 1, 2, 3, and 4. The differences in the
two versions depend on the type of globalization that is used.

For both algorithms, the search directions must include generators for T (xk, εk).
In [21] and Algorithm 2 of [26], and earlier in [27] (in a slightly restricted form), this
is accomplished by requiring the search directions to contain generators for T (xk, ε)
for all ε in the interval [0, εmax], with εmax > 0. This condition turns out to include
more directions than necessary. Algorithm 1 in [26] allows for a smaller set of search
directions: the set of search directions must exactly generate T (xk, εk)—and only
T (xk, εk). For Algorithm 1 in [26] εk is simply a parameter decreased at unsuccessful
iterations, as opposed to the particular εk we choose here. We can relax the condition
that the set of search directions exactly generate only T (xk, εk) because we enforce a
slightly more stringent sufficient decrease condition.

Our requirement that the search directions include generators for T (xk, εk) makes
sense geometrically. The maximum length step we can try at iteration k is εk =
∆kβmax, so none of the steps we try will encounter any part of the boundary more
than a distance εk from xk.

We note a technical difference between the presentation of the algorithms in Fig-
ures 5.1 and 5.2 and what is assumed for the analysis in §6. In practice, GSS al-
gorithms terminate when the step-length control parameter ∆k falls below a given
threshold ∆tol > 0. Because this is important to any implementation, we have in-
cluded it in the statement of the algorithm. In Theorems 6.3, 6.4, and 6.5, however, we
assume that the iterations continue ad infinitum (i.e., in the context of the analysis,
the reader should assume ∆tol = 0).

5.1. GSS using a sufficient decrease condition. A linearly constrained GSS
algorithm based on a sufficient decrease globalization strategy is presented in Fig-
ure 5.1. Using a sufficient decrease globalization strategy, as outlined in §4.1, requires
that we enforce two particular conditions. Condition 5 ensures that ρ(∆k) = 0 only
when ∆k = 0. Condition 6 ensures that there is sufficient reduction on ∆k at unsuc-
cessful iterations.

The only assumption on f necessary to show that some subsequence of the ∆k

converges to zero is that f be bounded below in the feasible region.
Theorem 5.1 (Theorem 3.4 of [17]). Suppose f is bounded below on Ω. Then
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Algorithm 5.1 (Linearly constrained GSS using a sufficient
decrease globalization strategy)

Initialization.

Let x0 ∈ Ω be the initial guess.

Let ∆tol > 0 be the tolerance used to test for convergence.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Let εmax > βmax∆tol be the maximum distance used to identify nearby
constraints (εmax = +∞ is permissible).

Let ρ(·) be a forcing function satisfying Conditions 4 and 5.

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Let εk = min{εmax, βmax∆k}. Choose a set of search directions
Dk = Gk ∪Hk satisfying Conditions 1 and 2.

Step 2. If there exists dk ∈ Dk and a corresponding ∆̃k ∈ [0,∆k] satisfying
Condition 3 such that xk + ∆̃kdk ∈ Ω and

f(xk + ∆̃kdk) < f(xk)−ρ(∆k),

then:

– Set xk+1 = xk + ∆̃kdk.

– Set ∆k+1 = φk∆k for any choice of φk ≥ 1.

Step 3. Otherwise, for every d ∈ Gk, either xk + ∆kd 6∈ Ω or

f(xk + ∆kd) ≥ f(xk)−ρ(∆k).

In this case:

– Set xk+1 = xk (no change).

– Set ∆k+1 = θk∆k for some choice θk ∈ (0, 1)
satisfying Condition 6.

If ∆k+1 < ∆tol, then terminate.

Fig. 5.1. Linearly constrained GSS using a sufficient decrease globalization strategy.

for a linearly constrained GSS method using a sufficient decrease globalization strategy
satisfying Conditions 4, 5, and 6 (as outlined in Figure 5.1), lim infk→∞∆k = 0.

5.2. GSS using a rational lattice. A linearly constrained GSS algorithm
based on a rational lattice globalization strategy is presented in Figure 5.2. The
choice ρ(·) ≡ 0 is standard for the rational lattice globalization strategy, which means
only simple decrease, i.e., f(xk + ∆̃kdk) < f(xk), is required. We note, however, that
a sufficient decrease condition may be employed in conjunction with a rational lattice
globalization strategy; see [17]. The choice ρ(·) ≡ 0 also means that Condition 4
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Algorithm 5.2 (Linearly constrained generating set search
using a rational lattice globalization strategy)

Initialization.

Let x0 ∈ Ω be the initial guess.

Let ∆tol > 0 be the tolerance used to test for convergence.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Let εmax > βmax∆tol be the maximum distance used to identify nearby
constraints (εmax = +∞ is permissible).

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Let εk = min{εmax, βmax∆k}. Choose a set of search directions
Dk = Gk ∪Hk satisfying Conditions 1, 2, and 7.

Step 2. If there exists dk ∈ Dk and a corresponding ∆̃k ∈ [0,∆k] satisfying
Conditions 3 and 9 such that xk + ∆̃kdk ∈ Ω and

f(xk + ∆̃kdk) < f(xk),

then:

– Set xk+1 = xk + ∆̃kdk.

– Set ∆k+1 = φk∆k for a choice of φk ≥ 1
satisfying Condition 8.

Step 3. Otherwise, for every d ∈ Gk, either xk + ∆kd 6∈ Ω or

f(xk + ∆kd) ≥ f(xk).

In this case:

– Set xk+1 = xk (no change).

– Set ∆k+1 = θk∆k for some choice θk ∈ (0, 1)
satisfying Condition 8.

If ∆k+1 < ∆tol, then terminate.

Fig. 5.2. Linearly constrained GSS using a rational lattice globalization strategy.

is satisfied automatically. The trade-off for using simple decrease is that additional
conditions must be imposed on the choice of admissible Dk (Condition 7), φk and θk

(Condition 8), and ∆̃k (Condition 9).
Using a rational lattice globalization strategy, to show that some subsequence of

the step length control parameters goes to zero, the only assumption we place on f
is that the set F = { x ∈ Ω | f(x) ≤ f(x0) } is bounded.

Theorem 5.2 (Theorem 3.8 of [17]). Assume that F = { x ∈ Ω | f(x) ≤ f(x0) }
is bounded. Then for a linearly constrained GSS methods using a lattice global-
ization strategy satisfying Conditions 4, 7, 8, and 9 (as outlined in Figure 5.2),
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lim infk→∞∆k = 0.

6. Stationarity results. At unsuccessful iterations of the linearly constrained
GSS methods outlined in Figures 5.1 and 5.2, we can bound the measure of stationarity
χ(xk) in terms of ∆k. To do so, we make the following assumptions.

Assumption 6.1. The set F = { x ∈ Ω | f(x) ≤ f(x0) } is bounded.

Assumption 6.2. The gradient of f is Lipschitz continuous with constant
M on F .

If both Assumption 6.1 and Assumption 6.2 hold, then there exists γ > 0 such that
for all x ∈ F ,

‖∇f(x) ‖ < γ.(6.1)

We then have the following results for the algorithms in Figures 5.1 and 5.2.
Theorem 6.3. Suppose that Assumption 6.2 holds. Consider the linearly con-

strained GSS algorithms given in Figures 5.1 and 5.2, both of which satisfy Conditions
1, 2, and 3. If k is an unsuccessful iteration and εk satisfies εk = βmax∆k, then

‖ [−∇f(xk)]T (xk,εk) ‖ ≤
1

κmin

(
M∆kβmax +

ρ(∆k)
∆kβmin

)
.(6.2)

Here, κmin is from Condition 1, M is from Assumption 6.2, and βmax and βmin are
from Condition 2.

Proof. Clearly, we need only consider the case when [−∇f(xk)]T (xk,εk) 6= 0.
Condition 1 guarantees a set G ⊆ Gk that generates T (xk, εk). By (2.1) (with K =
T (xk, εk) and v = −∇f(xk)) there exists some d̂ ∈ G such that

κ(G) ‖ [−∇f(xk)]T (xk,εk) ‖ ‖ d̂ ‖ ≤ −∇f(xk)T d̂.(6.3)

Condition 3 and the fact that iteration k is unsuccessful tell us that

f(xk + ∆kd) ≥ f(xk)− ρ(∆k) for all d ∈ Gk for which xk + ∆kd ∈ Ω.

Condition 2 ensures that for all d ∈ G, ‖∆kd ‖ ≤ ∆kβmax and, by assumption,
∆kβmax = εk, so we have ‖∆kd ‖ ≤ εk for all d ∈ G. Proposition 2.2 then assures us
that xk + ∆kd ∈ Ω for all d ∈ G. Thus,

f(xk + ∆kd)− f(xk) + ρ(∆k) ≥ 0 for all d ∈ G.(6.4)

Meanwhile, since the gradient of f is assumed to be continuous (Assumption 6.2),
we can apply the mean value theorem to obtain, for some αk ∈ (0, 1),

f(xk + ∆kd)− f(xk) = ∆k∇f(xk + αk∆kd)T d for all d ∈ G.

Putting this together with (6.4),

0 ≤ ∆k∇f(xk + αk∆kd)T d + ρ(∆k) for all d ∈ G.
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Dividing through by ∆k and subtracting ∇f(xk)T d from both sides yields

−∇f(xk)T d ≤ (∇f(xk + αk∆kd)−∇f(xk))T
d + ρ(∆k)/∆k for all d ∈ G.

Since ∇f(x) is Lipschitz continuous (Assumption 6.2) and 0 < αk < 1, we obtain

−∇f(xk)T d ≤ M∆k‖ d ‖2 + ρ(∆k)/∆k for all d ∈ G.(6.5)

Since (6.5) holds for all d ∈ G, (6.3) tells us that for some d̂ ∈ G,

κ(G) ‖ [−∇f(xk)]T (xk,εk) ‖ ≤ M∆k‖ d̂ ‖+
ρ(∆k)

∆k ‖ d̂ ‖
.

Using the bounds on ‖ d̂ ‖ in Condition 2,

‖ [−∇f(xk)]T (xk,εk) ‖ ≤
1

κ(G)

(
M∆kβmax +

ρ(∆k)
∆kβmin

)
.

The theorem then follows from the fact that κ(G) > κmin (Condition 1).
Theorem 6.4 relates the measure of stationarity χ(xk) to the step length control

parameter ∆k.
Theorem 6.4. Suppose that Assumptions 6.1 and 6.2 hold. Consider the lin-

early constrained GSS algorithms given in Figures 5.1 and 5.2, both of which satisfy
Conditions 1, 2, and 3. If k is an unsuccessful iteration and εk = βmax∆k, then

χ(xk) ≤
(

M

κmin
+

γ

νmin

)
∆k βmax +

1
κmin βmin

ρ(∆k)
∆k

.(6.6)

Here, κmin is from Condition 1, νmin is from (2.4), M is from Assumption 6.2, γ is
from (6.1), and βmax and βmin are from Condition 2.

Proof. Since εk = ∆kβmax, Proposition B.2 tells us that

χ(xk) ≤ ‖ [−∇f(xk)]T (xk,εk) ‖+
∆kβmax

νmin
‖ [−∇f(xk)]N(xk,εk) ‖.

Furthermore, the bound on ‖ [−∇f(xk)]T (xk,εk) ‖ from Theorem 6.3 holds. The pro-
jection onto convex sets is contractive, so ‖ [−∇f(xk)]N(xk,εk) ‖ ≤ ‖∇f(xk) ‖. Under
Assumptions 6.1 and 6.2, (6.1) holds, so ‖ [−∇f(xk)]N(xk,εk) ‖ ≤ γ. The result follows.

If we choose either ρ(∆) ≡ 0 or ρ(∆) = α∆p with α > 0 and p ≥ 2, then we obtain
an estimate of the form χ(xk) = O(∆k).

The constants M , γ, and νmin in (6.6) are properties of the problem (1.1). The
remaining quantities—the bounds on the lengths of the search directions βmin and
βmax, as well as κmin—are under the control of the algorithm. The value of κmin can
be increased by adding search directions to G ⊆ Gk.

Before we continue, we observe that the Lipschitz assumption (Assumption 6.2)
can be relaxed. A similar bound can be obtained assuming only continuous differ-
entiability of f . Let ω denote the following modulus of continuity of ∇f(x): given
x ∈ Ω and r > 0,

ω(x, r) = max { ‖∇f(y)−∇f(x) ‖ | y ∈ Ω, ‖ y − x ‖ ≤ r } .
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Then the proof of Theorem 6.4 yields the bound

χ(xk) ≤ 1
κmin

ω(xk,∆kβmax) +
γ

νmin
∆k βmax +

1
κmin βmin

ρ(∆k)
∆k

.

Returning to Theorem 6.4, if we recall from Theorems 5.1 and 5.2 that the step-
length control parameter ∆k is manipulated explicitly by GSS methods in a way that
ensures lim infk→∞∆k = 0, then an immediate corollary is the following first-order
convergence result.

Theorem 6.5. Suppose that Assumptions 6.1 and 6.2 hold. Then for the linearly
constrained GSS algorithm in Figure 5.1, which satisfies Conditions 1, 2, 3, 4, 5, and
6, as well as for the linearly constrained GSS algorithm in Figure 5.2, which satisfies
Conditions 1, 2, 3, 4, 7, 8, and 9, we have

lim inf
k→0

χ(xk) = 0.

7. Using ∆k to terminate GSS methods after unsuccessful iterations.
We now present some numerical illustrations of the practical implications of Theo-
rem 6.4. We show that ∆k can be used as a reasonable measure of stationarity when
implementing GSS methods to solve (1.1). The results in §6 serve as a justification
for terminating the search when ∆k < ∆tol.

To demonstrate that ∆k is a reasonable measure of stationarity, we show the
following results from experiments using an implementation of a GSS method for
solving (1.1) (a thorough discussion of the implementation, as well as further numerical
results, can be found in [19]).

The first test problem is the following quadratic program (QP) for n = 8:

minimize f(x) =
∑n

j=1 j2x2
j

subject to 0 ≤ x ≤ 1∑n
j=1 xj ≥ 1,

(7.1)

where xj is the jth component of the vector x. The last constraint is binding at the
solution. The second test problem is posed on a pyramid in R3:

minimize f(x) =
∑3

j=1[(4− j)2(xj − cj)2 − xj ]
subject to x3 ≥ 0

x1 + x2 + x3 ≤ 1
x1 − x2 + x3 ≤ 1

−x1 + x2 + x3 ≤ 1
−x1 − x2 + x3 ≤ 1,

(7.2)

with c = (0.01, 0.01, 0.98)T . Again, xj and cj are the jth components of the vectors x
and j, respectively. The solution is at c, which is near the apex of the pyramid. The
algorithm actually visits the apex, which is a degenerate vertex insofar as there are
four constraints in three variables that meet there.

These problems were solved using the forcing functions ρ(∆) = 10−4∆2 and
ρ(∆) ≡ 0; the algorithm behaved exactly the same for both choices. The search
directions included generators for the cones T (xk, ε) for all ε in the interval [0, εmax],
where εmax = 0.2. All search directions were normalized, so βmin = βmax = 1. For
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these choices, Theorem 6.4 says that χ(xk) = O(∆k) at unsuccessful iterations when
∆k ≤ εmax.

After any unsuccessful iteration, we reduced ∆k by half. Before proceeding to the
next iteration, we recorded the value of ∆k and computed the value of χ(xk). These
values are reported in Table 7.1 for iterations at which ∆kβmax ≤ εmax. As the results
make clear, there are no real surprises.

(a) The QP in (7.1)

∆k χ(xk)
0.0 50000000000 0 .708966400000
0.0 25000000000 0 .702676200000
0.0 12500000000 0 .702676200000
0.00 6250000000 0 .175954400000
0.00 3125000000 0 .175954400000
0.00 1562500000 0.0 50660390000
0.000 781250000 0.0 50660390000
0.000 390625000 0.00 6906371000
0.000 195312500 0.00 6906371000
0.0000 97656250 0.00 4441546000
0.0000 48828125 0.00 4441546000
0.0000 24414063 0.00 1171873000
0.0000 12207031 0.000 157063000
0.00000 6103516 0.000 157063000
0.00000 3051758 0.0000 10256150
0.00000 1525879 0.0000 10256150
0.000000 762939 0.00000 8368884

(b) The QP in (7.2)

∆k χ(xk)
0.0 50000000000 0.0 77888810000
0.0 25000000000 0.0 77888810000
0.0 12500000000 0.0 31473920000
0.00 6250000000 0.00 9044181000
0.00 3125000000 0.00 9044181000
0.00 1562500000 0.00 3492924000
0.000 781250000 0.000 279221500
0.000 390625000 0.000 279221500
0.000 195312500 0.000 279221500
0.0000 97656250 0.000 279221500
0.0000 48828125 0.0000 93105050
0.0000 24414063 0.0000 24547840
0.0000 12207031 0.00000 9678778
0.00000 6103516 0.00000 2978927
0.00000 3051758 0.0000000 11121
0.00000 1525879 0.0000000 11121
0.000000 762939 0.0000000 11121

Table 7.1
GSS runs showing decrease in ∆k versus decrease in χ(xk) at unsuccessful iterations.

The point of the results report in Table 7.1 is not to demand close scrutiny of each
entry but rather to demonstrate the trend in the quantities measured. We clearly see
the linear relationship between ∆k and χ(xk) that Theorem 6.4 tells us to expect.
These results are consistent with findings for the unconstrained case [11] as well as
with a long-standing recommendation for using ∆k as a stopping criterion for direct
search methods (see [15]).

One practical benefit of using ∆k as a measure of stationarity is that it is already
present in GSS algorithms; no additional computation is required. Another good
reason for using ∆k as a measure of stationarity is that it is largely insusceptible to
numerical error. Since GSS methods often are recommended when the evaluations of
f are subject to numerical “noise,” the fact that ∆k will not be affected by numerical
noise in the computed values of f(xk) suggests that ∆k provides a particularly suitable
stopping criterion.

We close with the observation that the effectiveness of ∆k as a measure of station-
arity clearly depends on the value of the constants in the bound in (6.6). For instance,
if f is highly nonlinear, so that the Lipschitz constant M is large, then using ∆k to
estimate χ(xk) might be misleading. While GSS methods cannot control M and γ,
which depend on the problem (1.1), a careful implementation of GSS methods for
solving (1.1) can control all the remaining constants in (6.6). Thus a careful imple-
mentation can ensure that ∆k is a useful measure of stationarity except when f is
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highly nonlinear (i.e., M is large with respect to ‖∇f ‖).

8. Conclusions. The results we have presented are useful in several ways. First,
they clarify the relationship between the geometry of the feasible region near an
iterate xk and the search directions needed by GSS. Theorem 6.3 and Theorem 6.4
bring out many of the elements common to the approaches described in [20, 21] and
[25, 26]. Although the globalization approaches to ensure lim infk→∞∆k = 0 differ,
both classes of algorithms can use the same analysis to show that

χ(xk) = O(∆k),

as described in connection with Theorem 6.4. This result does not depend on the
method of globalization; instead, it depends mainly on choosing search directions
that correctly reflect the nearby boundary.

Theorem 6.3 will allow the use of linearly constrained GSS methods in the aug-
mented Lagrangian framework given in [9]. That approach proceeds by successive
approximate minimization of the augmented Lagrangian. The stopping criterion in
the subproblems involves the norm of the projection onto T (xk, ωk) of the negative
gradient of the augmented Lagrangian, for a parameter ωk ↓ 0. In the derivative-free
setting the gradient is unavailable. However, Theorem 6.3 enables us to use ∆k as an
alternative measure of stationarity in the subproblems. Details will appear in [18].

An interesting consequence of these results is that we have theoretical support for
terminating the algorithm when ∆k falls below some tolerance. Theorem 6.4 shows
that at the subsequence of unsuccessful iterations, we have χ(xk) = O(∆k) as ∆k → 0.
This is illustrated numerically in §7. At the same time, Theorem 6.4 also suggests
that this stopping criterion may be unsuitable if the objective is highly nonlinear,
making clear the need for direct search methods, like all optimization algorithms, to
account for scaling.

In summary, we have provided a new take on direct search methods for linearly
constrained problems. Our results illuminate how the properties of the problem (such
as the nonlinearity of f and the boundary defined by A) and the parameter choices
for the algorithm (such as the scaling and distribution of the search directions) will
affect the progress of GSS towards a KKT point of problem (1.1). We have given a
theoretical basis for a practical stopping criterion and provided numerical examples
as justification.

Acknowledgments. We thank Margaret Wright, the associate editor who han-
dled this paper, along with two anonymous referees, for the many useful comments
that led to a significant improvement in the presentation.

Appendix A. Criticality measure for first-order constrained stationar-
ity. Here we discuss χ(x) and ‖ q(x) ‖ in more detail. Because these measures are
not novel, we have relegated their discussion to an appendix.

As discussed in the introduction, for x ∈ Ω progress toward a KKT point of (1.1)
can be measured by:

χ(x) ≡ max
x+w∈Ω
‖w ‖≤1

−∇f(x)T w.(A.1)

This measure was originally proposed in [9] and is discussed at length in Section 12.1.4
of [10], where the following properties are noted:

1. χ(x) is continuous.
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2. χ(x) ≥ 0.
3. χ(x) = 0 if and only if x is a KKT point for (1.1).

Showing that χ(xk) → 0 as k →∞ constitutes a global first-order stationarity result.
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Fig. A.1. How the w in (A.1) varies with −∇f(x) when x−∇f(x) 6∈ Ω .

To help better understand this measure, the w’s that define χ(x) in (A.1) are
illustrated in Figure A.1 for several choices of −∇f(x). Conn, Gould, and Toint
[10] observe that χ(x) can be interpreted as the progress that can be made on a
first-order model at x in a ball of radius unity with the constraint of preserving
feasibility. They go on to observe that χ(x) is a direct generalization of ‖∇f(x) ‖; in
fact, χ(x) = ‖∇f(x) ‖ whenever Ω = Rn or x−∇f(x) ∈ Ω.

The work in [21, 22] used the measure q(x) defined in (1.4) (this quantity appears
in [10] as equation (12.1.19)), but the resulting stationarity result is unsatisfying in
the case of general linear constraints. The quantity χ(x) turns out to be easier to work
with than q(x). The latter involves a projection onto the feasible polyhedron, and if
the constraints binding at the projection do not correspond to the constraints near x,
technical difficulties ensue in relating q(x) to the geometry of the feasible region near
x. This is not the case with χ(x).

Appendix B. Geometric results on cones and polyhedra. Here we present
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geometrical results having to do with our use of χ(·) as a measure of stationarity.
Since these are largely technical in nature, we have relegated them to an appendix.

The first proposition says that if one can move from x to x+v and remain feasible,
then v cannot be too outward-pointing with respect to the constraints near x. Recall
from §2.1 that given a convex cone K and any vector v, there is a unique closest point
of K to v, the projection of v onto K, which we denote by vK . Thus vN(x,ε) is the
projection of v onto the ε-normal cone N(x, ε) while vT (x,ε) is the projection of v onto
the ε-tangent cone T (x, ε).

Proposition B.1. If x ∈ Ω and x + v ∈ Ω, then for any ε ≥ 0, ‖ vN(x,ε) ‖ ≤
ε/νmin, where νmin is the constant from (2.4).

Proof. Let N = N(x, ε). The result is immediate if vN = 0, so we need
only consider the case when vN 6= 0. Recall that N is generated by the outward-
pointing normals to the binding constraints within distance ε of x; thus, the set
A = { ai | i ∈ I(x, ε) } generates N . A simple calculation shows that the distance
from x to

{
y | aT

i y = bi

}
is (bi − aT

i x)/‖ ai ‖, so it follows that

bi − aT
i x

‖ ai ‖
≤ ε for all i ∈ I(x, ε).

Meanwhile, since x + v ∈ Ω, we have

aT
i x + aT

i v ≤ bi for all i.

The preceding two relations then lead to

aT
i v ≤ bi − aT

i x ≤ ε ‖ ai ‖ for all i ∈ I(x, ε).

Since N is generated by A ⊆ A = {a1, . . . , am} and vN 6= 0, by (2.1) and (2.4),

νmin ‖ vN ‖ ≤ max
i∈I(x,ε)

vT ai

‖ ai ‖
≤ max

i∈I(x,ε)

ε ‖ ai ‖
‖ ai ‖

= ε.

For x ∈ Ω and v ∈ Rn, define

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v.(B.1)

Note from (A.1) that χ(x) = χ̂(x;−∇f(x)). We use v in (B.1) to emphasize that the
following results are purely geometric facts about cones and polyhedra.

The following proposition relates χ̂(x; v) to the projection of v onto the cones
T (x, ε) and N(x, ε). Roughly speaking, it says that if ε > 0 is small, so that we are
only looking at a portion of the boundary very near x, then the projection of v onto
T (x, ε) (i.e., the portion of v pointing into the interior of the feasible region) cannot
be small unless χ̂(x; v) is also small.

Proposition B.2. If x ∈ Ω, then for all ε ≥ 0,

χ̂(x; v) ≤ ‖ vT (x,ε) ‖+
ε

νmin
‖ vN(x,ε) ‖,

where νmin is the constant from (2.4).
Proof. Let N = N(x, ε) and T = T (x, ε). Writing v in terms of its polar decom-

position, v = vN + vT , we obtain

χ̂(x; v) = max
x+w∈Ω
‖w ‖≤1

wT v ≤ max
x+w∈Ω
‖w ‖≤1

wT vT + max
x+w∈Ω
‖w ‖≤1

wT vN .
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For the first term on the right-hand side we have

max
x+w∈Ω
‖w ‖≤1

wT vT ≤ ‖ vT ‖.

Meanwhile, for any w we have

wT vN = (wT + wN )T vN ≤ wT
NvN

since wT
T vN ≤ 0. Thus,

max
x+w∈Ω
‖w ‖≤1

wT vN ≤ max
x+w∈Ω
‖w ‖≤1

‖wN ‖ ‖ vN ‖.

However, since x + w ∈ Ω, Proposition B.1 tells us that

‖wN ‖ ≤ ε

νmin
.

Therefore,

χ̂(x; v) ≤ ‖ vT ‖+
ε

νmin
‖ vN ‖.
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